STUDIES ON ORALLY ACTIVE CEPHALOSPORIN ESTERS

Koichi Fujimoto, Sadao Ishihara, Hiroaki Yanagisawa, Junya Ide, Eiji Nakayama, Hideo Nakao, Shin-ichi Sugawara ${ }^{\dagger}$
and Masayuki Iwata
Sankyo Research Laboratories, Sankyo Co., Ltd, 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140, Japan

(Received for publication September 26, 1986)

Abstract

The synthesis and the biological properties of orally active cephalosporin esters are described. 3-Methoxymethyl cephem derivatives having a 2 -(2-aminothiazol-4-yl)-(Z)-2methoxyiminoacetamide function at C-7 (1) showed good activity against a wide variety of bacteria including some β-lactamase producing species. The prodrug type esters of 1 exhibited a good urinary recovery after oral administration to mice and 1-(isopropoxycarbonyloxy)ethyl ester ($\mathbf{2 a}, \mathrm{CS}-807$) has been pre-clinically tested as an orally active cephem prodrug.

Recently, remarkable developments have been achieved with respect to β-lactam antibiotics. The cephalosporins bearing an aminothiazole-oxime moiety at the C-7 position of the cephem nucleus, so-called third generation cephalosporins ${ }^{1 \sim 4)}$, have been developed clinically as parenteral antibiotics. They possess a wide antimicrobial spectrum against Gram-positive and Gram-negative bacteria and an increased resistance against bacterial β-lactamases. On the other hand, less significant developments have been achieved with orally active cephalosporins. Cephalexin (CEX) and its analogs bearing D-phenylglycine or closely related acyl side chains at the C-7 position are now in clinical use but are less active against Gram-negative bacteria than the third generation cephalosporins ${ }^{5}$. Therefore, many efforts have been made to afford new orally active cephalosporins exhibiting wider and stronger antibacterial activity than CEX and its analogs. Recently, orally active third generation cephalosporins, cefixime (FK 027) ${ }^{\text {s) }}$ and $\mathrm{T}-2588^{7)}$ (12d), have been reported.

The current cephalosporins clinically used for injection are not suitable for oral administration because of their low absorption from the gastro-intestinal tract. According to our experiments, cefazolin (CEZ) and cefmetazole (CMZ) (Fig. 1), typical parenteral cephem antibiotics, each resulted in only 4% urinary recovery after oral administration to mice.

One of the reasons for such low absorption could be attributed to the relatively low $p K a$ value of these compounds, i.e., $p K a 2.2$ for CEZ and $p K a 2.3$ for CMZ, and so would almost completely exist as the unfavorable ionic form for passive absorption in the intestinal tract after oral administration. Therefore, we assumed that esterification of the carboxyl group at the C-4 position of the third generation cephem antibiotics may increase intestinal absorption of the drugs. The prodrug approach has been frequently utilized in penicillins to give a lipophilicity which is known to be one of the important factors in the passive absorption from the intestinal tract ${ }^{8}$.

During the course of our research into orally active cephalosporins, we found that the combination of the substituent at $\mathrm{C}-3$ and the ester at $\mathrm{C}-4$ strongly influenced intestinal absorption. Some

[^0]Fig. 1.

Cefazolin (CEZ)

Cefmetazole (CMZ)

Fig. 2.

esters of 3-alkoxymethyl and 3-methyl derivatives exhibited better urinary recovery than those of compounds possessing other substituents at the C-3 position. In particular, 7 β - 2 -(2 -aminothiazol4 -yl)-(Z)-2-methoxyiminoacetamido]-3-methoxymethyl-3-cephem-4-carboxylic acid (1, Fig. 2) showed a well-balanced antimicrobial activity against Gram-positive and Gram-negative bacteria and its esters exhibited excellent urinary recovery after oral administration to mice.

In this paper, we describe the synthesis and the biological properties of prodrug type cephalosporin esters, 1-(isopropoxycarbonyloxy)ethyl 7β-[2-(2-aminothiazol-4-yl)-(Z)-2-methoxyiminoacetamido]-3-methoxymethyl-3-cephem-4-carboxylate (2a, Fig. 2) and its related compounds.

Chemistry

The synthetic routes of the esters ($\mathbf{2 a}$ and $\mathbf{2 b}$) of 3 -methoxymethyl cephem derivative ($\mathbf{1}$) are shown in Scheme 1. The 3-acetoxymethyl cephem derivatives (4 a and 4 b) prepared by acylation of 7-aminocephalosporanic acid (7ACA) were treated with aqueous methanol in the presence of CaCl_{2} to give the corresponding 3-methoxymethyl cephem derivatives ($\mathbf{5 a}$ and $\mathbf{5 b}$). The chloroacetyl group of 5 a was removed by treatment with thiourea in water to afford the compound $\mathbf{1}$ in 75.5% yield. Esterification of 1 with iodides ($\mathbf{6 a}$ and $\mathbf{6 b}$) gave the corresponding esters ($\mathbf{2 a}$ and $\mathbf{2 b}$).

Pivaloyloxymethyl (POM) ester (2b) was also prepared via another procedure. The dicyclohexylamine salt of $\mathbf{5 b}$ was treated with iodomethyl pivalate ($6 \mathbf{b}$) to give an ester (7) in 82% yield. The phenoxyacetyl group of 7 was removed by Chauverte's modification ${ }^{9)}$. 7-Amino derivative (8) was acylated with 2-(2-formylaminothiazol-4-yl)-(Z)-2-methoxyiminoacetic acid (9) and POCl_{3} followed by removal of the formyl group from the resulting compound to give the desired POM ester (2b) in 83% yield.

The other esters ($\mathbf{2 c} \sim \mathbf{2 0}, \mathbf{1 2 a} \sim \mathbf{1 2 h}$) were prepared by the esterification of the carboxylic acids $(\mathbf{1}, \mathbf{1 1 2} \sim 11 \mathrm{~h})$ with the corresponding halides as shown in Scheme 2.

The parental cephem derivatives, 11a and 11b, were prepared as follows (Scheme 3). An acetyl group at $\mathrm{C}-3$ of 7ACA was removed in methanol with NaOH and the successive acylation with phenoxyacetyl chloride gave 3-hydroxymethyl cephem derivative (13) in 50.6% yield. The esterification of 13 with diphenyldiazomethane followed by chlorination of the resulting 3-hydroxymethyl cephem ester (14) with SOCl_{2} gave 3-chloromethyl derivative (15), which was treated with NaI in the usual manner; successive treatment of the resulting iodomethyl derivative with the corresponding alcohols

Scheme 1.

$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOCH}_{2} \mathrm{I}$
6b

2a $\mathrm{R}_{2}=\underset{\mathrm{CH}_{3}}{\mathrm{CHOCOOCH}}$
2b $\mathrm{R}_{2}=\mathrm{POM}$
$\mathrm{POM}=\mathrm{CH}_{2} \mathrm{OCOC}\left(\mathrm{CH}_{3}\right)_{3}$
TsOH $=p$-Toluenesulfonic acid

Scheme 2.

in the presence of $\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ afforded 3-ethoxymethyl and 3-propoxymethyl derivatives (16a and 16b). The desired cephems (11a and 11b) were prepared from these compounds (16a and 16b) by removal of the phenoxyacetyl group of $16 a$ and $16 b$, the acylation of the resulting 7 -amino cephem derivatives with 2-(chloroacetylaminothiazol-4-yl)-(Z)-2-methoxyiminoacetic acid and the removal of

$\longrightarrow 11 \mathrm{a}$ and 11 b
the protective group of the resulting compounds successively.
Biological Results and Discussion
To start with preparation and biological estimation on POM esters of $7 \beta-[2-(2$-aminothiazol-4-yl)-(Z)-2-methoxyiminoacetamidol-3-substituted-3-cephem-4-carboxylic acid (1, 11a~11h) were carried out as POM esters are generally regarded as useful prodrugs in oral administration of β-lactam antibiotics such as pivampicillin ${ }^{10)}$ and pivmecillinam ${ }^{11)}$. The antimicrobial activity of parental cephalosporins ($\mathbf{1}, \mathbf{1 1 a} \sim \mathbf{1 1 h}$) and their urinary recovery as a measure of intestinal absorption after oral administration of their POM esters ($\mathbf{2 b}, \mathbf{1 2 a} \sim \mathbf{1 2 h}$) are shown in Table 1. Among the POM esters, 3-alkoxymethyl derivatives ($2 \mathrm{~b}, \mathbf{1 2 a}$ and 12b) and 3-methyl derivative ${ }^{12)}$ (12c) showed $62 \sim 83 \%$ dose recovery in urine. Although ceftizoxime ${ }^{4)}$ (11e), cefmenoxime ${ }^{2)}$ (11f) and cefotaxime ${ }^{1)}$ (11g) showed excellent antimicrobial activity, their esters $(\mathbf{1 2 e} \sim \mathbf{1 2 g})^{13)}$ showed less urinary recovery than $\mathbf{2 b}$ and $12 \mathrm{a} \sim \mathbf{1 2} \mathrm{c}$. The low urinary recovery of 12 g and $\mathbf{1 2 h}$ could be attributed to their instability in vivo. They would be converted into metabolites unable to be absorbed in the gastro-intestinal tract or biologically inactive metabolites. Among the 3-methyl and 3-alkoxymethyl derivatives (1, 11a~ 11c) whose POM esters showed high intestinal absorption after oral administration, the 3-methoxymethyl derivative (1) showed the strongest antimicrobial activity against Gram-positive and Gramnegative bacteria.

Therefore, the preparation and the biological evaluation of several kinds of esters of 1 , other than POM ester, were carried out (Table 2). The POM ester (2 b) gave good recovery in urine among the acyloxyalkyl esters ($\mathbf{2 b}, \mathbf{2 i}$ and $\mathbf{2 j}$). Of the other types of esters ($\mathbf{2 d}, \mathbf{2 k} \sim \mathbf{2 m}$), ethoxycarbonyloxyethyl ester (2 d) showed relatively high urinary recovery. The phthalidyl ${ }^{14)}$ and (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl ${ }^{15)}$ esters of $\mathbf{1}(\mathbf{2 k}, \mathbf{2 l}$ and $\mathbf{2 m}$) showed relatively low recovery.

Subsequently, alkoxycarbonyloxyalkyl (carbonate type) esters have been further elaborated in order to improve intestinal absorption (Table 3). Among a series of the compounds ($\mathbf{2 d}, \mathbf{2 n}$ and $\mathbf{2 0}$) possessing a terminal ethyl group $\left(\mathbf{R}_{2}\right)$ in the ester function, the compounds having a methyl or an ethyl group as $\mathrm{R}_{1}, \mathbf{2 d}$ and $\mathbf{2 0}$, each gave 60% urinary recovery. Of the above, the ester $\mathbf{2 d}$ having a methyl substituent as R_{I} was better than 20 with respect to practical preparation. From our experiments, a methyl substituent as R_{1} resulted in superior urinary recovery when the drugs possessed the same terminal aklyl group $\left(\mathbf{R}_{2}\right)$. We then studied carbonate type esters possessing a methyl groups as R_{1} in the ester function ($\mathbf{2 a}, \mathbf{2 c} \sim \mathbf{2 h}$).

According to these results, the combination of carbonate type ester and 3-methoxymethyl sub-

Table 1. Antibacterial activity $(\mu \mathrm{g} / \mathrm{ml})^{a}$ of 7 -aminothiazolyl cephalosporins and their urinary recovery ($\%$ of dose $)^{\text {b }}$ after oral administration of their pivaloyloxymethyl (POM) esters to mice.

${ }^{\text {a }}$ Determined with an inoculum of $10^{7} \mathrm{cfu} / \mathrm{ml}$.
b Urinary recovery was determined by disk method on nutrient agar using Bacillus subtilis ATCC 6633 as a test strain after oral administration of POM esters ($50 \mathrm{mg} / \mathrm{kg}$ as a parental cephalosporin) in slc $d d \mathrm{Y}$ (SPF) mice ($n=5,0 \sim 24$ hours).
c S.a.; Staphylococcus aureus 209 P JC-1, S.a.(R); S. aureus 56, E.c.; Escherichia coli NIHJ JC-2, E.c.(R); E. coli 609, K.p.; Klebsiella pneumoniae 806, K.p.(R); K. pneumoniae 846, P.v.; Proteus vulgalis 1420 . (R) means β-lactamase producing strains.
stituent exhibited a fairly good recovery of parental cephem compound (1) in urine when these esters were administered orally to mice. Some of the carbonate type esters having a branched methyl substituent in the terminal alkyl moiety of the ester function such as $\mathbf{2 a}$ and $\mathbf{2 f}$ showed a good intestinal absorption as well as CEX. These compounds showed similar biological properties in the further studies. 1-(Isopropoxycarbonyloxy)ethyl ester (2a) was more favorable than $\mathbf{2 f}$ in an aspect of the practical preparation because two asymmetric centers in the ester function of 2f gave a complex mixture of two pairs of diastereoisomers in comparison with a mixture of diastereoisomers derived from an asymmetric center in the case of 2 a . From the various chemical and biological properties, 2a (CS-807) was chosen as a clinical candidate.

1-(Isopropoxycarbonyloxy)ethyl ester (2a) was hydrolyzed rapidly in a homogenate of the small intestine and in a serum of rats in vitro, and 1 was found in the blood of the portal vein 2a and CEX are shown in Table 4. 1-(Isopropoxycarbonyloxy)ethyl ester (2a), CS-807, exhibited high

Table 3. Urinary recovery ($\%$ of dose) of $\mathbf{1}$ after oral administration of carbonate type esters ($\mathbf{2 a}, \mathbf{2 c} \sim \mathbf{2 h}$, 2 n and 20) to mice.

Compound No.	R_{1}	R_{2}	Urinary recovery (\%)
2a (CS-807)	CH_{3}	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	67
2 c	CH_{3}	CH_{3}	63
2d	CH_{3}	$\mathrm{CH}_{2} \mathrm{CH}_{3}$	60
2 e	CH_{3}	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	45
2 f	CH_{3}	$\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$	76
2 g	CH_{3}	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	56
2 h	CH_{3}	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	55
2n	H	$\mathrm{CH}_{2} \mathrm{CH}_{3}$	40
20	$\mathrm{CH}_{2} \mathrm{CH}_{3}$	$\mathrm{CH}_{2} \mathrm{CH}_{3}$	60
Cephalexin			66

Urinary recovery was determined by the same method as described in Table 1.

Table 4. Serum levels $(\mu \mathrm{g} / \mathrm{ml})$ after oral administration to mice of $2 \mathrm{a}(\mathrm{CS}-807)^{2}$ and cephalexin (CEX).

Compound	Serum levels ($\mu \mathrm{g} / \mathrm{ml}$)						
	7.5 minutes	$\begin{aligned} & 15 \\ & \text { minutes } \end{aligned}$	$\begin{gathered} 30 \\ \text { minutes } \end{gathered}$	$\begin{gathered} 60 \\ \text { minutes } \end{gathered}$	$\stackrel{90}{\text { minutes }}$	$\begin{gathered} 120 \\ \text { minutes } \end{gathered}$	$\begin{gathered} 180 \\ \text { minutes } \end{gathered}$
2a (CS-807)	23.5	39.6	34.4	18.8	11.7	8.1	2.7
CEX	30.0	43.3	31.7	13.7	NT	9.2	2.6
Compound	$\mathrm{T}_{\text {max }}$ (hour)		$\mathrm{C}_{\max }(\mu \mathrm{g} / \mathrm{ml})$		$\mathrm{T}_{1 / 2}$ (hour)	AUC ($\mu \mathrm{g} \cdot$ hours/ml)	
2a (CS-807)	0.25		39.6		0.684	45.9	
CEX	0.25		43.3		0.445	44.5	

a Measured as 1. Method and materials were the same as in the determination of urinary recovery as described in Table 1.
NT: Not tested.
Table 5. ${ }^{1} \mathrm{H}$ NMR data of pivaloyloxymethyl esters (12a, 12b and $\mathbf{1 2 h}$).

	$\mathrm{CDCl}_{3}, \delta \mathrm{ppm}, J$ in Hz
12a	$1.19\left(3 \mathrm{H}, \mathrm{t}, J=7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.24\left(9 \mathrm{H}, \mathrm{s}\right.$, tert-butyl), $3.49\left(2 \mathrm{H}, \mathrm{q}, J=7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.58(2 \mathrm{H}$, br s, $2-\mathrm{CH}_{2}$), $4.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NOCH}_{3}\right), 4.37\left(2 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{2}\right), 5.07(1 \mathrm{H}, \mathrm{d}, J=5,6-\mathrm{CH}), 5.57(2 \mathrm{H}$, br s, $\left.\mathrm{NH}_{2}\right), 5.88\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.04(1 \mathrm{H}, \mathrm{dd}, J=5$ and $9,7-\mathrm{CH}), 6.76(1 \mathrm{H}, \mathrm{s}$, thiazole ring-H), 7.90 ($1 \mathrm{H}, \mathrm{d}, J=9,7-\mathrm{NHCO}$).
12b	$0.90\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7,\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right), 1.23\left(9 \mathrm{H}, \mathrm{s}\right.$, tert-butyl), $1.2 \sim 1.9\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.38$ $\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.59\left(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{2}\right), 4.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NOCH}_{3}\right), 4.37\left(2 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{2}\right)$, $5.07(1 \mathrm{H}, \mathrm{d}, J=5,6-\mathrm{CH}), 5.68\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 5.87\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.02(1 \mathrm{H}, \mathrm{dd}, J=5$ and 9 , $7-\mathrm{CH}), 6.71(1 \mathrm{H}, \mathrm{s}$, thiazole ring-H), $8.03(1 \mathrm{H}, \mathrm{d}, J=9,7-\mathrm{NHCO})$.
12h	$1.23\left(9 \mathrm{H}, \mathrm{s}\right.$, tert-butyl), $3.53\left(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{2}\right), 3.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 5.07(1 \mathrm{H}$, $\mathrm{d}, J=5,6-\mathrm{CH}), 5.34\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 3^{\prime}-\mathrm{CH}_{2}\right), 5.77\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 5.92\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.01(1 \mathrm{H}$, $\mathrm{dd}, J=5$ and $9,7-\mathrm{CH}), 6.70(1 \mathrm{H}$, s, thiazole ring-H), $7.83(1 \mathrm{H}, \mathrm{d}, J=9,7-\mathrm{NHCO}), 8.46(1 \mathrm{H}$, s , triazole ring- H).

serum levels and good urinary recovery, which were on a par with CEX.

Experimental

IR spectra were recorded on a Japan Spectroscopic Co., Ltd., IRA-2 spectrometer. NMR spectra were determined on a Varian EM- $360(60 \mathrm{MHz}$) spectrometer using TMS as an internal standard.

The melting points were determined using Yanagimoto micro-melting point apparatus. The melting points and the boiling points are uncorrected.

7 β-[2-(2-Chloroacetylaminothiazol-4-yl)-(Z)-2-methoxyiminoacetamido]-3-methoxymethyl-3-cephem-4-carboxylic Acid (5a)

To a solution of $4 \mathbf{4}(26 \mathrm{~g})$ and $\mathrm{NaHCO}_{3}(4.1 \mathrm{~g})$ in water (80 ml) were added methanol (170 ml) and $\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(375 \mathrm{~g})$ successively at room temp. After stirring for 75 minutes at $70^{\circ} \mathrm{C}$, the mixture was poured into ice-water (500 ml). The mixture was acidified with conc $\mathrm{HCl}(10 \mathrm{ml})$ and extracted with EtOAc $(2 \times 500 \mathrm{ml})$. The extracts were combined and washed with brine. The organic layer was extracted with 10% aq $\mathrm{K}_{2} \mathrm{HPO}_{4}(350,150$ and 100 ml successively). The aqueous layers were combined and extracted with EtOAc $(2 \times 500 \mathrm{ml})$ after acidification with HCl . The organic layers were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$, and concd to about $1 / 5$ volume to yield a precipitate. The mixture was allowed to stand at room temp for 3 hours. The resulting precipitate was collected by filtration to give $5 \mathrm{a}(15.97 \mathrm{~g})$ in 64.8% yield. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-d_{6}$) $\delta 3.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.60$ $\left(2 \mathrm{H}\right.$, br s, $\left.2-\mathrm{CH}_{2}\right), 3.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NOCH}_{3}\right), 4.26\left(2 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{2}\right), 4.43\left(2 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{2} \mathrm{Cl}\right), 5.25(1 \mathrm{H}, \mathrm{d}$, $J=5 \mathrm{~Hz}, 6-\mathrm{CH}), 5.89(1 \mathrm{H}, \mathrm{dd}, J=5$ and $9 \mathrm{~Hz}, 7-\mathrm{CH}), 7.56(1 \mathrm{H}, \mathrm{s}$, thiazole ring-H), $9.83(1 \mathrm{H}, \mathrm{d}, J=$ $9 \mathrm{~Hz}, 7-\mathrm{NHCO}$).
$\begin{array}{cl}\text { Anal Calcd for } \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClN}_{5} \mathrm{O}_{7} \mathrm{~S}_{2}: & \mathrm{C} 40.52, \mathrm{H} 3.60, \mathrm{Cl} 7.04, \mathrm{~N} 13.90, \mathrm{~S} 12.72 . \\ \text { Found: } & \text { C } 40.27, \mathrm{H} \mathrm{3.53,} \mathrm{Cl} 6.98, \mathrm{~N} 13.83, \mathrm{~S} 12.70 .\end{array}$
7 β-[2-(2-Aminothiazol-4-yl)-(Z)-2-methoxyiminoacetamido]-3-methoxymethyl-3-cephem-4carboxylic Acid (1)

To a solution of $5 \mathrm{a}(8 \mathrm{~g})$ and $\mathrm{NaHCO}_{3}(4 \mathrm{~g})$ in water $(20 \mathrm{ml})$ was added thiourea $(1.82 \mathrm{~g})$ at room temp. After stirring for 14 hours at the same temp, the resulting precipitate was filtered off and conc $\mathrm{HCl}(20 \mathrm{ml})$ was added to the solution on an ice bath with stirring. The resulting precipitate was filtered off again. The filtrate was adjusted to about $\mathrm{pH} 2 \sim 3$ with aq NaOH to yield a precipitate which was collected by filtration to give $1(5.12 \mathrm{~g})$ in 75.5% yield. IR (KBr) $\mathrm{cm}^{-1} 1760$ (β-lactam $\mathrm{C}=\mathrm{O}), 1670($ amide $\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{8}) $\delta 3.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.52\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{CH}_{2}\right), 3.86$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NOCH}_{3}\right), 4.30\left(2 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{2}\right), 5.17(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}, 6 \mathrm{CH}), 5.80(1 \mathrm{H}$, dd, $J=5$ and 8.5 Hz , $7-\mathrm{CH}), 6.78(1 \mathrm{H}, \mathrm{s}$, thiazole ring-H$), 6.8 \sim 7.6\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 9.60(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 7-\mathrm{NHCO})$.

Anal Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{~S}_{2}$: C 42.15, H 4.01, $\mathrm{N} 16.38, \mathrm{~S} 15.00$. Found: \quad C 42.14, H 4.06, N 16.38, S 14.88.

1-Iodoethyl Isopropyl Carbonate (6a)

To a mixture of ethyl chloroformate (280 ml) and sulfuryl chloride (260 ml) was added benzoylperoxide (1 g) at room temp. After being refluxed for 7.5 hours, the mixture was distilled to give 1 -chloroethyl chloroformate (217 g) (boiling range $119 \sim 140^{\circ} \mathrm{C}$). To a solution of 1 -chloroethyl chloroformate (317 g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2,000 \mathrm{ml})$ was added isopropyl alcohol (397 ml) under cooling with stirring. Pyridine (230 ml) was added dropwise to the solution over 20 minutes and the mixture was stirred for 30 minutes at the temp. The reaction mixture was washed successively with water $(500 \mathrm{ml})$, brine $(500 \mathrm{ml})$ and 5% aq KHSO_{4}, and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed and the resulting liquid was distilled under reduced pressure to give 1-chloroethyl isopropyl carbonate (228 g). $\mathrm{BP}_{5 s} 92 \sim 94^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left.\left(\mathrm{CCl}_{4}\right) \delta 1.33\left(6 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.79(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CHClCH})_{3}\right)$, $4.84\left(1 \mathrm{H}\right.$, septet, $\left.\left.J=6 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 6.37(1 \mathrm{H}, \mathrm{q}, J=6 \mathrm{~Hz}, \mathrm{CHClCH})_{3}\right)$.

To a solution of 1 -chloroethyl isopropyl carbonate (102 g) in benzene ($1,000 \mathrm{ml}$) were added $\mathrm{NaI}(200 \mathrm{~g})$ and 18 -crown- $6(5 \mathrm{~g})$ and the mixture was refluxed overnight. The mixture was washed with water and 5% aq $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concd in vacuo to give $6 \mathrm{a}(144 \mathrm{~g}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.32\left(6 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.18(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CHICH})$, $4.82\left(1 \mathrm{H}\right.$, septet, $\left.J=6 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 6.68(1 \mathrm{H}, \mathrm{q}, J=6 \mathrm{~Hz}, \mathrm{CHICH} 3)$.

1-(Isopropoxycarbonyloxy)ethyl 7β-[2-(2-Aminothiazol-4-yl)-(Z)-2-methoxyiminoacetamido]-3-methoxymethyl-3-cephem-4-carboxylate (2a)

To a solution of $1(427 \mathrm{mg})$ in N, N-dimethylacetamide (20 ml) were added dicyclohexylamine $(200 \mathrm{mg})$ and $6 \mathbf{a}(310 \mathrm{mg})$ successively under cooling. After stirring for 30 minutes, EtOAc (100 ml) was added to the mixture. The resulting precipitate was filtered off and the filtrate was washed with dil HCl , aq NaHCO_{3} and brine successively. The organic layer was dried (MgSO_{4}) and concd in vacuo to give a yellow solid. The solid was chromatographed on a silica gel column (EtOAc-cyclohexane, $3: 1$) to give $2 \mathrm{a}(501 \mathrm{mg}, 89.9 \%$ yield) as a mixture of a pair of diastereomers derived from an asymmetric center in the ester function. $\mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1} 1780(\beta$-lactam $\mathrm{C}=\mathrm{O}), 1680$ (amide $\mathrm{C}=\mathrm{O}$). ${ }^{1} \mathrm{H}$ NMR (Table 6).

Anal Calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{~S}_{2}$: C 45.24, H 4.88, N 12.56 , S 11.50. Found: $\quad \mathrm{C} 45.27, \mathrm{H} 5.07, \mathrm{~N} 12.30, \mathrm{~S} 11.44$.
The esters $(\mathbf{2 c} \sim \mathbf{2 j}, \mathbf{2 m} \sim \mathbf{2 0})$ were prepared in a procedure similar to that described above. NMR data are listed in Table 6.

Phthalidyl $7 \beta-[2-(2-A m i n o t h i a z o l-4-y l)-(Z)-2-m e t h o x y i m i n o a c e t a m i d o]-3-m e t h o x y m e t h y l-3-~$ cephem-4-carboxylate (2 k and 2 I)

Sodium salt of $1(500 \mathrm{mg})$ was dissolved in DMSO (5 ml) and phthalidyl bromide (356 mg) was added to the solution at room temp. After stirring for 15 minutes, the mixture was diluted with EtOAc $(100 \mathrm{ml})$ and washed with aq NaHCO_{3} and brine.

The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concd in vacuo to give a mixture of 2 k and 2 l . The

Table 6. ${ }^{1} \mathrm{H}$ NMR data of esters of 3 -methoxymethyl cephem derivatives ($\mathbf{2 a} \sim \mathbf{2 0}$).

	$\mathrm{CDCl}_{3}, \delta \mathrm{ppm}, J$ in Hz
2 a	$1.31\left(6 \mathrm{H}, \mathrm{d}, J=6, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.56\left(3 \mathrm{H}, \mathrm{d}, J=5.5, \mathrm{CHCH}_{3}\right), 3.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.52(2 \mathrm{H}$, br s, $\left.2-\mathrm{CH}_{2}\right), 4.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NOCH}_{3}\right), 4.32\left(2 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{2}\right), 4.5 \sim 5.2\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.06$ $(1 \mathrm{H}, \mathrm{d}, J=5,6-\mathrm{CH}), 6.02(1 \mathrm{H}, \mathrm{dd}, J=5$ and $9,7-\mathrm{CH}), 6.72(1 \mathrm{H}, \mathrm{s}$, thiazole ring-H), 7.88 and 7.96 (total $1 \mathrm{H}, \mathrm{q} \times 2, J=5.5, \mathrm{CHCH} 3$), 8.06 and 8.10 (total $1 \mathrm{H}, \mathrm{d} \times 2, J=9,7-\mathrm{NHCO}$).
2b	$1.23\left(9 \mathrm{H}, \mathrm{s}\right.$, tert-butyl), $3.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.56\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{CH}_{2}\right), 4.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NOCH}_{3}\right)$, $4.31\left(2 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{2}\right), 5.08(1 \mathrm{H}, \mathrm{d}, J=5,6 \mathrm{CH}), 5.79\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 5.88\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.02$ $(1 \mathrm{H}, \mathrm{dd}, J=5$ and $9,7-\mathrm{CH}), 6.70(1 \mathrm{H}, \mathrm{s}$, thiazole ring -H$), 8.11(1 \mathrm{H}, \mathrm{d}, J=9,7-\mathrm{NHCO})$.
2c	$1.55\left(3 \mathrm{H}, \mathrm{d}, J=5.5, \mathrm{CHCH}_{3}\right), 3.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.51\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{CH}_{2}\right), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NOCH}_{3}\right), 4.25\left(2 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{2}\right), 5.00(1 \mathrm{H}, \mathrm{d}, J=5,6-\mathrm{CH}), 5.4 \sim 6.1(3 \mathrm{H}, \mathrm{m}, 7-\mathrm{CH}$ and NH_{2}) $, 6.59\left(1 \mathrm{H}, \mathrm{s}\right.$, thiazole ring-H), 6.77 and 6.87 (total $\left.1 \mathrm{H}, \mathrm{q} \times 2, J=5.5, \mathrm{CH}_{3} \mathrm{CH}_{3}\right), 8.02$ ($1 \mathrm{H}, \mathrm{d}, J=9,7-\mathrm{NHCO}$).
2 d	$1.32\left(3 \mathrm{H}, \mathrm{t}, J=7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.58\left(3 \mathrm{H}, \mathrm{d}, J=5.5, \mathrm{CHCH}_{3}\right), 3.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.55(2 \mathrm{H}$, br s, $2-\mathrm{CH}_{2}$), $4.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NOCH}_{3}\right), 4.21\left(2 \mathrm{H}, \mathrm{q}, J=7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.33\left(2 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{2}\right), 5.03$ $(1 \mathrm{H}, \mathrm{d}, J=5,6-\mathrm{CH}), 5.4 \sim 6.2\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 5.8 \sim 6.2(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{CH}), 6.70(1 \mathrm{H}, \mathrm{s}$, thiazole ring-H), 6.83 and 6.92 (total $1 \mathrm{H}, \mathrm{q} \times 2, J=5.5, \mathrm{CHCH}_{3}$), 7.97 ($1 \mathrm{H}, \mathrm{d}, J=9,7-\mathrm{NHCO}$).
2 e	$0.95\left(3 \mathrm{H}, \mathrm{t}, J=7.5, \mathrm{CH}_{3}\right), 1.56\left(3 \mathrm{H}, \mathrm{d}, J=5.5, \mathrm{CHCH}_{3}\right), 1.3 \sim 2.0\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.30(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.52\left(2 \mathrm{H}, \mathrm{brs}, 2-\mathrm{CH}_{2}\right), 4.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NOCH}_{3}\right), 4.11\left(2 \mathrm{H}, \mathrm{t}, J=7.5, \mathrm{CH}_{2}\right), 4.31(2 \mathrm{H}$, br s, $\left.3^{\prime}-\mathrm{CH}_{2}\right), 5.04(1 \mathrm{H}, \mathrm{d}, J=5,6-\mathrm{CH}), 5.7 \sim 6.1\left(3 \mathrm{H}, \mathrm{m}, 7-\mathrm{CH}\right.$ and $\left.\mathrm{NH}_{2}\right), 6.64(1 \mathrm{H}, \mathrm{s}$, thiazole ring -H), 6.80 and 6.88 (total $\left.1 \mathrm{H}, \mathrm{q} \times 2, J=5.5, \mathrm{CHCH}_{3}\right), 8.14(1 \mathrm{H}, \mathrm{d}, J=9,7-\mathrm{NHCO})$.
$2 f$	$0.91\left(3 \mathrm{H}, \mathrm{t}, J=7, \mathrm{CH}_{3}\right), 1.2 \sim 1.9\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.27\left(3 \mathrm{H}, \mathrm{d}, J=6, \mathrm{CH}_{3}\right), 1.55(3 \mathrm{H}, \mathrm{d}, J=5.5$, $\left.\mathrm{CHCH}_{3}\right), 3.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.51\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{CH}_{2}\right), 3.99\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NOCH}_{3}\right), 4.29\left(2 \mathrm{H}, \mathrm{s}, 3^{\prime}-\right.$ $\left.\mathrm{CH}_{2}\right), 4.4 \sim 4.9(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 5.00(1 \mathrm{H}, \mathrm{d}, J=5,6-\mathrm{CH}), 5.1 \sim 6.0\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 5.7 \sim 6.1$ $(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{CH}), 6.61\left(1 \mathrm{H}, \mathrm{s}\right.$, thiazole ring-H), $\left.6.6 \sim 7.0(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH})_{3}\right), 7.6 \sim 8.0(1 \mathrm{H}, \mathrm{m}$, 7-NHCO).
2g	$1.48\left(9 \mathrm{H}, \mathrm{s}\right.$, tert-butyl), $1.55\left(3 \mathrm{H}, \mathrm{d}, J=5.5, \mathrm{CHCH}_{3}\right), 3.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.51(2 \mathrm{H}, \mathrm{br}$ s, 2$\left.\mathrm{CH}_{2}\right), 3.99\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NOCH}_{3}\right), 4.29\left(2 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{2}\right), 5.00(1 \mathrm{H}, \mathrm{d}, J=5,6-\mathrm{CH}), 5.64(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.\mathrm{NH}_{2}\right), 5.8 \sim 6.2(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{CH}), 6.64\left(1 \mathrm{H}, \mathrm{s}\right.$, thiazole ring-H), $6.6 \sim 7.0\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right)$, 7.84 and 7.87 (total $1 \mathrm{H}, \mathrm{d} \times 2, J=9,7-\mathrm{NHCO}$).
2h	$0.98\left(6 \mathrm{H}, \mathrm{d}, J=6, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.58\left(3 \mathrm{H}, \mathrm{d}, J=5.5, \mathrm{CHCH}_{3}\right), 1.3 \sim 2.3\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ and $\left.\mathrm{CH}_{2}\right)$, $3.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.54\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{CH}_{2}\right), 4.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NOCH}_{3}\right), 4.0 \sim 4.4\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.32$ $\left(2 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{2}\right), 5.05(1 \mathrm{H}, \mathrm{d}, J=5,6-\mathrm{CH}), 5.2 \sim 6.2\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 5.8 \sim 6.2(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{CH})$, $6.69\left(1 \mathrm{H}, \mathrm{s}\right.$, thiazole ring-H), 6.81 and $6.90\left(\right.$ total $\left.1 \mathrm{H}, \mathrm{q} \times 2, J=5.5, \mathrm{CHCH}_{3}\right), 7.74$ and 7.80 (total $1 \mathrm{H}, \mathrm{d} \times 2, J=9,7-\mathrm{NHCO}$).
2 i	$1.20\left(6 \mathrm{H}, \mathrm{d}, J=6.5, \mathrm{COCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.66\left(1 \mathrm{H}\right.$, septet, $\left.J=6.5, \mathrm{COCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.21(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.40\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{CH}_{2}\right), 4.01\left(3 \mathrm{H}, 3, \mathrm{NOCH}_{3}\right), 4.16\left(2 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{2}\right), 5.05(1 \mathrm{H}, \mathrm{d}, J=5$, $6-\mathrm{CH}), 5.6 \sim 6.2\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}, \mathrm{NH}_{2}\right.$ and $\left.7-\mathrm{CH}\right), 6.65(1 \mathrm{H}, \mathrm{s}$, thiazole ring -H$), 8.06(1 \mathrm{H}, \mathrm{d}$, $J=9,7-\mathrm{NHCO}$).
2 j	$1.15\left(3 \mathrm{H}, \mathrm{t}, J=7, \mathrm{COCH}_{2} \mathrm{CH}_{3}\right), 2.40\left(2 \mathrm{H}, \mathrm{q}, J=7, \mathrm{COCH}_{2} \mathrm{CH}_{3}\right), 3.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.54$ $\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{CH}_{2}\right), 4.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NOCH}_{3}\right), 4.30\left(2 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{2}\right), 5.03(1 \mathrm{H}, \mathrm{d}, J=4.5,6-\mathrm{CH})$, $5.83\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5.96(1 \mathrm{H}, \mathrm{dd}, J=4.5$ and $9,7-\mathrm{CH}), 6.73(1 \mathrm{H}, \mathrm{s}$, thiazole ring -H$), 7.74(1 \mathrm{H}$, d, $J=9,7-\mathrm{NHCO}$).
2k	$3.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.53\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{CH}_{2}\right), 4.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NOCH}_{3}\right), 4.26\left(2 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{2}\right), 5.01$ $(1 \mathrm{H}, \mathrm{d}, J=4.5,6-\mathrm{CH}), 5.91(1 \mathrm{H}, \mathrm{dd}, J=4.5$ and $9,7-\mathrm{CH}), 6.10\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 7.3 \sim 8.1(6 \mathrm{H}$, m , phenyl, CH and thiazole ring-H), $8.05(1 \mathrm{H}, \mathrm{d}, J=9,7-\mathrm{NHCO})$.
21	$3.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.69\left(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{2}\right), 3.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NOCH}_{3}\right), 4.35\left(2 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{2}\right), 5.18$ $(1 \mathrm{H}, \mathrm{d}, J=4.5,6-\mathrm{CH}), 5.96(1 \mathrm{H}, \mathrm{dd}, J=4.5$ and $9,7-\mathrm{CH}), 6.70\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 7.5 \sim 8.2$ $(6 \mathrm{H}, \mathrm{m}$, phenyl, CH and thiazole ring -H$), 8.44(1 \mathrm{H}, \mathrm{d}, J=9,7-\mathrm{NHCO})$.
2 m	$2.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.52\left(2 \mathrm{H}, \mathrm{br}, 2-\mathrm{CH}_{2}\right), 3.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NOCH}_{3}\right), 4.25(2 \mathrm{H}$, br s, $\left.3^{\prime}-\mathrm{CH}_{2}\right), 4.82$ and $5.11\left(2 \mathrm{H}, \mathrm{AB}\right.$ q, $J=13.5, \mathrm{CH}_{2}$ in ester), $5.04(1 \mathrm{H}, \mathrm{d}, J=4.5,6-\mathrm{CH})$, $5.7 \sim 6.3\left(3 \mathrm{H}, \mathrm{m}, \mathrm{NH}_{2}\right.$ and $\left.7-\mathrm{CH}\right), 6.57(1 \mathrm{H}, \mathrm{s}$, thiazole ring-H), $8.37(1 \mathrm{H}, \mathrm{d}, J=9,7-\mathrm{NHCO})$.
2n	$1.32\left(3 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.54\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \mathrm{CH}_{2}\right), 3.98(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NOCH}_{3}\right), 4.23\left(2 \mathrm{H}, \mathrm{q}, J=6.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.31\left(2 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{2}\right), 5.04(1 \mathrm{H}, \mathrm{d}, J=4.5,6-\mathrm{CH})$, $5.6 \sim 6.3\left(5 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{O}, \mathrm{NH}_{2}\right.$ and $\left.7-\mathrm{CH}\right), 6.54(1 \mathrm{H}$, s, thiazole ring -H$), 8.13(1 \mathrm{H}, \mathrm{d}, J=9$, 7-NHCO).

Table 6. (Continued)

	$\mathrm{CDCl}_{3}, \delta \mathrm{ppm}, J$ in Hz
2 o	$0.99\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7, \mathrm{CH}_{3}\right), 1.30\left(3 \mathrm{H}, \mathrm{t}, J=7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.6 \sim 2.2\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.28(3 \mathrm{H}, \mathrm{s}$,
	$\left.\mathrm{OCH}_{3}\right), 3.51\left(2 \mathrm{H}, \mathrm{br}, 2-\mathrm{CH}_{2}\right), 3.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NOCH}_{3}\right), 4.16\left(2 \mathrm{H}, \mathrm{q}, J=7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.27(2 \mathrm{H}$,
	$\left.\mathrm{s}, 3^{\prime}-\mathrm{CH}_{2}\right), 5.00(1 \mathrm{H}, \mathrm{d}, J=5,6-\mathrm{CH}), 5.6 \sim 6.2(3 \mathrm{H}, \mathrm{m}, \mathrm{NH} 2$ and $7-\mathrm{CH}), 6.58(1 \mathrm{H}, \mathrm{s}$, thiazole
ring-H) 6.64 and 6.71 (total $1 \mathrm{H}, \mathrm{t} \times 2, J=5, \mathrm{CH}), 8.04(1 \mathrm{H}, \mathrm{d}, J=9,7-\mathrm{NHCO})$.	

The esters ($\mathbf{2 a}, \mathbf{2 c} \sim \mathbf{2 e}, \mathbf{2 g}, \mathbf{2 h}$ and $\mathbf{2 o}$) were mixtures of diastereoisomers derived from the asymmetric carbon in the ester function. The ester 2 f was a mixture of two pairs of diastereoisomers derived from the two asymmetric centers in the ester group. The esters, $\mathbf{2 k}$ and $\mathbf{2 l}$, are diastereoisomers with regard to the asymmetric carbon in the ester function.
mixture was separated on a silica gel column (EtOAc - cyclohexane, $4: 1$) to give $2 k(236 \mathrm{mg}$) and $\mathbf{2 1}$ (188 mg), respectively. ${ }^{1} \mathrm{H}$ NMR (Table 6).

7β-Phenoxyacetamido-3-methoxymethyl-3-cephem-4-carboxylic Acid (5b)

To a solution of $4 b(10 \mathrm{~g})$ in water $(33 \mathrm{ml})$ were added methanol $(67 \mathrm{ml})$ and $\mathrm{CaCl}_{2}(100 \mathrm{~g})$ at room temp. After stirring for 45 minutes at $70^{\circ} \mathrm{C}$, the mixture was poured into ice-water (100 ml) and treated in a manner similar to that mentioned in the preparation of 5 a . The final extracts were concd in vacuo to give a yellow solid (5b) (7.15 g). The solid (5b) was dissolved in EtOAc (50 ml) and dicyclohexylamine $(3.4 \mathrm{ml})$ was added to the solution. The resulting precipitate was collected by filtration to give dicyclohexylamine salt of $5 \mathrm{~b}(8.43 \mathrm{~g})$ in 64.5% yield. IR (Nujol) $\mathrm{cm}^{-1} 1770$ (β lactam $\mathrm{C}=\mathrm{O}$), 1680 (amide $\mathrm{C}=\mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{0}) $\delta 0.8 \sim 2.3(20 \mathrm{H}, \mathrm{m}), 2.7 \sim 3.4(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}$ of dicyclohexylamine $\times 2$), $3.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.38\left(2 \mathrm{H}\right.$, br s, $\left.2-\mathrm{CH}_{2}\right), 4.19\left(2 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{2}\right), 4.60(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{2}\right), 4.99(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}, 6-\mathrm{CH}), 5.56(1 \mathrm{H}, \mathrm{dd}, J=5$ and $9 \mathrm{~Hz}, 7-\mathrm{CH}), 6.7 \sim 7.5(5 \mathrm{H}, \mathrm{m}$, phenyl), $8.98(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, 7-\mathrm{NHCO})$.

Further purification was carried out as follows. The dicyclohexylamine salt of 5 b (2 g) was suspended in a mixture of water (50 ml) and EtOAc $(50 \mathrm{ml})$, and the mixture was acidified with HCl . An insoluble material was filtered off and the EtOAc layer was separated. The organic layer was washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed and the resulting solid was chromatographed on a silica gel column ($\mathrm{EtOAc}-\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}, 5: 2: 1$) to give $\mathbf{5 b}(1.28 \mathrm{~g})$ in 94.7% yield. IR (Nujol) $\mathrm{cm}^{-1} 1790(\beta$-lactam $\mathrm{C}=\mathrm{O})$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.58(2 \mathrm{H}$, br s, $2-$ $\left.\mathrm{CH}_{2}\right), 4.41\left(2 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{2}\right), 4.62\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5.04(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}, 6 \mathrm{CH}), 5.89(1 \mathrm{H}, \mathrm{dd}, J=4.5$ and $9 \mathrm{~Hz}, 7-\mathrm{CH}), 6.8 \sim 7.6(5 \mathrm{H}, \mathrm{m}$, phenyl), $7.59(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, 7-\mathrm{NHCO})$.
$\begin{array}{cl}\text { Anal Calcd for } \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}: & \text { C 53.96, H 4.79, N 7.40. } \\ \text { Found: } & \text { C 53.63, H 4.68, N 7.34. }\end{array}$

Pivaloyloxymethyl 7β-Phenoxyacetamido-3-methoxymethyl-3-cephem-4-carboxylate (7)

To a solution of the dicyclohexylamine salt of $5 \mathrm{~b}(15 \mathrm{~g})$ in N, N-dimethylacetamide (70 ml) was added iodomethyl pivalate (6 b) (7.9 g) at room temp. After stirring for 15 minutes, EtOAc (200 ml) was added and the resulting precipitate was filtered off. The filtrate was washed with water, aq NaHCO_{3} and brine successively. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concd in vacuo. The residue was chromatographed on a silica gel column (n-hexane - EtOAc, 1:1) to give $7(10.9 \mathrm{~g}$) in 82.6% yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.21\left(9 \mathrm{H}, \mathrm{s}\right.$, tert-butyl), $3.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.43\left(2 \mathrm{H}, \mathrm{br}\right.$ s, $\left.2-\mathrm{CH}_{2}\right)$, $4.22\left(2 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{2}\right), 4.42\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.87(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}, 6-\mathrm{CH}), 4.5 \sim 6.0(3 \mathrm{H}, \mathrm{m}, 7-\mathrm{CH}$ and $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 6.4 \sim 7.2(5 \mathrm{H}, \mathrm{m}$, phenyl), $7.40(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 7-\mathrm{NHCO})$.
p-Toluenesulfonic Acid Salt of Pivaloyloxymethyl 7 β-Amino-3-methoxymethyl-3-cephem-4carboxylate (8)

To a solution of $7(20 \mathrm{~g})$ were added pyridine $(6.6 \mathrm{ml})$ and $\mathrm{PCl}_{8}(12.7 \mathrm{~g})$ at $-50^{\circ} \mathrm{C}$ with stirring. The cooling bath was removed and the mixture was stirred at room temp for 1 hour. After cooling the reaction mixture to $-20^{\circ} \mathrm{C}$, methanol (20 ml) was added. The mixture was then stirred for 1 hour at room temp again and concd in vacuo. The residue was dissolved in EtOAc (300 ml) and the solution was washed with ice-cooled aq NaHCO_{3} twice and then brine. The organic layer was dried
$\left(\mathrm{MgSO}_{4}\right)$ and concd. The residue was dissolved in $\mathrm{EtOAc}(100 \mathrm{ml})$ and a solution of p-toluenesulfonic acid mono hydrate (7.7 g) in $\operatorname{EtOAc}(50 \mathrm{ml})$ was added to the solution. The resulting precipitate was collected by filtration to give $8(11.2 \mathrm{~g})$ in 52% yield. MP $160 \sim 170^{\circ} \mathrm{C}$ (dec); IR (Nujol) $\mathrm{cm}^{-1} 1790\left(\beta\right.$-lactam C=O); ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right) \delta 1.20\left(9 \mathrm{H}, \mathrm{s}\right.$, tert-butyl), $2.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.26$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.69\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{CH}_{2}\right), 4.28\left(2 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{2}\right), 5.1 \sim 5.6(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ and $7-\mathrm{H}), 5.83$ and $5.93\left(2 \mathrm{H}, \mathrm{AB} \mathrm{q}, J=6 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{O}\right), 7.14(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, phenyl), $7.59(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, phenyl).

Anal Calcd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S} \cdot \mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{3} \mathrm{~S}: \quad \mathrm{C} 49.80, \mathrm{H} 5.70, \mathrm{~N} 5.28, \mathrm{~S} 12.08$.
Found: \quad C 49.76, H 5.60, N 5.00, S 12.06.
Pivaloyloxymethyl 7 β-[2-(2-Formylaminothiazol-4-yl)-(Z)-2-methoxyiminoacetamido]-3-methoxy-methyl-3-cephem-4-carboxylate (10)

To a solution of $8(3.93 \mathrm{~g}), 9(1.88 \mathrm{~g})$ and diethylaniline $(3.65 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{ml})$ was added $\mathrm{POCl}_{3}(1.27 \mathrm{~g})$ under cooling with stirring. After 30 minutes the solvent was removed and displaced with EtOAc (200 ml). The solution was washed with $5 \% \mathrm{HCl}$ twice, ice-cooled aq NaHCO_{3} and brine successively. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concd in vacuo. The crude product was chromatographed on a silica gel column (EtOAc $-\mathrm{CHCl}_{3}, 3: 1$) to give 10 (3.95 g) as a colorless solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{8}) $\delta 1.19\left(9 \mathrm{H}, \mathrm{s}\right.$, tert-butyl), $3.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.50\left(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{2}\right), 3.90(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NOCH}_{3}\right), 4.18\left(2 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{2}\right), 5.22(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}, 6-\mathrm{CH}), 5.8 \sim 6.1\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ and $\left.7-\mathrm{CH}\right), 7.42$ $(1 \mathrm{H}, \mathrm{s}$, thiazole ring- H$), 8.52(1 \mathrm{H}, \mathrm{s}, \mathrm{HCO}), 9.68(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, 7-\mathrm{NHCO})$.

Pivaloyloxymethyl 7β-[2-(2-Aminothiazol-4-yl)-(Z)-2-methoxyiminoacetamido]-3-methoxymethyl-3-cephem-4-carboxylate (2b)
A): The esterification of $\mathbf{1}(3.1 \mathrm{~g})$ was carried out with dicyclohexylamine (1.45 g) and $\mathbf{6 b}(2 \mathrm{~g})$ in N, N-dimethylacetamide (30 ml) by the method mentioned in the preparation of 2 a .

Purification by silica gel column chromatography ($\mathrm{EtOAc}-\mathrm{CHCl}_{3}, 4: 1$) gave $\mathbf{2 b}(2.99 \mathrm{~g})$ in 76% yield. IR (Nujol) $\mathrm{cm}^{-1} 1785$ (β-lactam $\mathrm{C}=\mathrm{O}$), 1680 (amide $\mathrm{C}=\mathrm{O}$). ${ }^{1} \mathrm{H}$ NMR (Table 6).

Anal Calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{~S}_{2}$: C 46.57, H 5.03, N 12.93, S 11.84.
Found: \quad C 46.35, H 5.00, N 12.76, S 11.62.
B): To a suspension of $\mathbf{1 0}(3 \mathrm{~g})$ in methanol (30 ml) was added conc $\mathrm{HCl}(0.9 \mathrm{ml})$ at room temp and the mixture was stirred for 30 minutes at $40^{\circ} \mathrm{C}$ to give a solution. The solution was diluted with EtOAc (150 ml) and washed with ice-cooled aq NaHCO_{3} and brine. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concd in vacuo. The residue was chromatographed on a silica gel column (EtOAc) to give $\mathbf{2 b}(2.53 \mathrm{~g})$ in 88.7% yield.

7β-Phenoxyacetamido-3-hydroxymethyl-3-cephem-4-carboxylic Acid (13)

To a suspension of 7ACA (200 g) in methanol (368 ml) was slowly added $1 \mathrm{~N} \mathrm{NaOH}(735 \mathrm{ml}$) at $-5^{\circ} \mathrm{C}$ with stirring. An additional portion of $1 \mathrm{~N} \mathrm{NaOH}(735 \mathrm{ml})$ was added to the resulting solution and stirred for 30 minutes at $0 \sim 5^{\circ} \mathrm{C}$. Acetone (500 ml) was added to the mixture and then phenoxyacetyl chloride (17 g) was added dropwise to the mixture over a period of 30 minutes at $0 \sim$ $5^{\circ} \mathrm{C}$.

After washing the mixture with $\mathrm{EtOAc}(1,000 \mathrm{ml})$, the aqueous layer was acidified with conc HCl $(83 \mathrm{ml})$ and extracted twice with EtOAc $(1,000 \mathrm{ml})$. The extract was combined and concd to a small volume without drying to give precipitate. The precipitate was collected by filtration to give $\mathbf{1 3}$ $(135.3 \mathrm{~g})$ in 50.6% yield. MP $141 \sim 142^{\circ} \mathrm{C}$; IR (KBr$)_{\mathrm{cm}}{ }^{-1} 1760(\beta$-lactam $\mathrm{C}=\mathrm{O}$), 1655 (amide $\mathrm{C}=\mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.\mathrm{d}_{6}\right) \delta 3.55\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{CH}_{2}\right), 4.28\left(2 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{2}\right), 4.58\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.99(1 \mathrm{H}, \mathrm{d}$, $J=4.5 \mathrm{~Hz}, 6-\mathrm{CH}), 5.60(1 \mathrm{H}, \mathrm{dd}, J=4.5$ and $8 \mathrm{~Hz}, 7-\mathrm{CH}), 6.6 \sim 7.5(5 \mathrm{H}, \mathrm{m}$, phenyl), $8.87(1 \mathrm{H}, \mathrm{d}, J=$ $8 \mathrm{~Hz}, 7-\mathrm{NHCO}$).

Anal Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$: C 52.74, H 4.43, N 7.69, S 8.80.
Found: \quad C 52.60, H 4.36, N 7.67, S 8.77.
Diphenylmethyl 7β-Phenoxyacetamido-3-hydroxymethyl-3-cephem-4-carboxylate (14)
To a solution of $13(64.88 \mathrm{~g})$ was added a solution of diphenyldiazomethane (38 g) in EtOAc $(100 \mathrm{ml})$ at $5^{\circ} \mathrm{C}$. The mixture was stirred for 4 hours at the same temp and the solvent was removed. THF (500 ml) was added to the residue and insoluble material was filtered off. The filtrate was concd
to a small volume to give crystals. EtOAc (500 ml) was added to the mixture which was then allowed to stand on an ice bath for 1 hour. The resulting crystals were collected by filtration to give 14 (90.52 g) in 95.8% yield. MP $161 \sim 162^{\circ} \mathrm{C}$; IR (KBr) $\mathrm{cm}^{-1} 1780(\beta$-lactam $\mathrm{C}=\mathrm{O}$), 1680 (amide $\mathrm{C}=\mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.d_{8}\right) \delta 3.59\left(2 \mathrm{H}\right.$, br s, $\left.2-\mathrm{CH}_{2}\right), 4.20\left(2 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}, 3^{\prime}-\mathrm{CH}_{2}\right), 4.57\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5.03$ $(1 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}, \mathrm{OH}), 5.06(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}, 6-\mathrm{H}), 5.68(1 \mathrm{H}, \mathrm{dd}, J=4.5$ and $8 \mathrm{~Hz}, 7-\mathrm{CH}), 6.6 \sim 7.6$ $(16 \mathrm{H}, \mathrm{m}$, phenyl and CH$), 8.98(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, 7-\mathrm{NHCO})$.

Anal Caled for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$: C $65.65, \mathrm{H} 4.94, \mathrm{~N} 5.28, \mathrm{~S} 6.04$.
Found:
C 65.67, H 5.06, N 5.28, S 6.04.

Diphenylmethyl 7β-Phenoxyacetamido-3-chloromethyl-3-cephem-4-carboxylate (15)

To a solution of $14(95 \mathrm{~g})$ in THF $(950 \mathrm{ml})$ was slowly added $\mathrm{SOCl}_{2}(15.5 \mathrm{ml})$ at $-20^{\circ} \mathrm{C}$ with stirring. After stirring for 4.5 hours at $0^{\circ} \mathrm{C}$, the solvent was removed. The residue was dissolved in EtOAc (250 ml) and allowed to stand at room temp overnight. The resulting crystals were collected by filtration to give $15(83.21 \mathrm{~g})$ in 84.6% yield. MP $151 \sim 151.5^{\circ} \mathrm{C}$ (dec); IR (KBr) $\mathrm{cm}^{-1} 1780(\beta-$ $\operatorname{lactam} \mathrm{C}=\mathrm{O}$), 1690 (amide $\mathrm{C}=\mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-d_{6}$) $\delta 3.60\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{CH}_{2}\right), 4.37\left(2 \mathrm{H}, \mathrm{s}, 3^{\prime}-\right.$ CH_{2}), $4.55\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5.13(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}, 6-\mathrm{CH}), 5.74(1 \mathrm{H}, \mathrm{dd}, J=4.5$ and $8 \mathrm{~Hz}, 7-\mathrm{CH}), 6.5 \sim$ $7.6(16 \mathrm{H}, \mathrm{m}$, phenyl and CH$), 9.04(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, 7 \mathrm{NHCO})$.
$\begin{array}{cl}\text { Anal Calcd for } \mathrm{C}_{29} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{5} 6: & \mathrm{C} 63.44, \mathrm{H} 4.59, \mathrm{~N} 5.10, \mathrm{Cl} 6.46, \mathrm{~S} 5.84 . \\ \text { Found: } & \mathrm{C} 63.45, \mathrm{H} \mathrm{4.72,N} \mathrm{5.08,Cl6.34,S6.13.}\end{array}$

Diphenylmethyl 7β-Phenoxyacetamido-3-ethoxymethyl-3-cephem-4-carboxylate (16a)

To a solution of $\mathbf{1 5}(4.48 \mathrm{~g})$ in acetone (120 ml) was added $\mathrm{NaI}(1.31 \mathrm{~g})$ at room temp with stirring. The mixture was allowed to stand at the same temp for 1 hour. After removing the solvent, EtOAc was added to the residue and washed with water and brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed in vacuo to give the corresponding iodomethyl derivative (5.17 g). To a suspension of the iodomethyl derivative (5 g) in ethanol was added a suspension of $\left.\mathrm{Hg}_{\left(\mathrm{NO}_{3}\right)}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}(2.67 \mathrm{~g})$ in $\mathrm{CH}_{3} \mathrm{CN}$ $(120 \mathrm{ml})$ and stirred for 20 minutes at room temp. An insoluble material was filtered off and the filtrate was poured into water. The aqueous layer was extracted with EtOAc and washed with water, and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed and the residue was purified on a silica gel column (EtOAc cyclohexane, $1: 2$) to give $16 \mathrm{a}(3.12 \mathrm{~g})$ in 71.5% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.11(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.37\left(2 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.53\left(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{2}\right), 4.28\left(2 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{2}\right), 4.54\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$, $4.99(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}, 6-\mathrm{CH}), 5.91(1 \mathrm{H}, \mathrm{dd}, J=5$ and $9 \mathrm{~Hz}, 7-\mathrm{CH}), 6.8 \sim 7.6(17 \mathrm{H}, \mathrm{m}$, phenyl, CH and $7-\mathrm{NHCO}$).

Diphenylmethyl 7β-Phenoxyacetamido-3-propoxymethyl-3-cephem-4-carboxylate (16b)
The preparation of 16 b was carried out by a method similar to that described above. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.84\left(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right), 1.1 \sim 1.8\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.21(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.45\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{CH}_{2}\right), 4.25\left(2 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{2}\right), 4.50\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.90(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}$, $6-\mathrm{CH}), 5.85(1 \mathrm{H}, \mathrm{dd}, J=5 \mathrm{and} 9 \mathrm{~Hz}, 7-\mathrm{CH}), 6.7 \sim 7.7(17 \mathrm{H}, \mathrm{m}$, phenyl, CH and $7-\mathrm{NHCO})$.

Trifluoroacetic Acid Salt of 7β-[2-(2-Aminothiazol-4-yl)-(Z)-2-methoxyiminoacetamido]-3-ethoxymethyl-3-cephem-4-carboxylic Acid (11a)

The removal of the phenoxyacetyl group of $16 \mathrm{a}(1.117 \mathrm{~g})$ was carried out by a method similar to that described in the preparation of 8 to give diphenylmethyl 7β-amino-3-ethoxymethyl-3-cephem-4carboxylate (345 mg) in 40.6% yield. The 7 -amino derivative (345 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml}$) was acylated by the usual manner using 2 -(chloroacetylaminothiazol-4-yl)-(Z)-2-methoxyiminoacetyl chloride, which was prepared from the corresponding acid (271 mg), $(\mathrm{COCl})_{2}(124 \mathrm{mg})$ and triethylamine $(99 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ by Engel's modification ${ }^{18)}$, in the presence of diethylaniline (0.35 ml) to give the acylated compound, diphenylmethyl 7β-[2-(2-chloroacetylaminothiazol-4-yl)-(Z)-2-methoxyiminoacetamido]-3-ethoxymethyl-3-cephem-4-carboxylate (147 mg). To a solution of the acylated compound (147 mg) in N, N-dimethylacetamide (1.5 ml) was added thiourea (32 mg) and stirred for 3 hours at room temp. The reaction mixture was neutralized with aq NaHCO_{3} and stirred for additional 2 hours. The reaction mixture was diluted with EtOAc and the mixture was washed with 5% aq NaHCO_{3}, water $(\times 3)$ and brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed and chromatographed on a silica gel
column (EtOAc - cyclohexane, $3: 2$) to give a solid (73 mg). The solid was dissolved in anisole (0.7 ml) and trifluoroacetic acid $(0.7 \mathrm{ml})$ was added to the solution at $-15^{\circ} \mathrm{C}$ with stirring. After stirring for 20 minutes at room temp the solvent was removed and the residue was triturated with diisopropyl ether to give trifluoroacetic acid salt of $11 \mathrm{a}(55 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (acetone- d_{6}) $\delta 1.14(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.49\left(2 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.62\left(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{2}\right), 4.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NOCH}_{3}\right), 4.35(2 \mathrm{H}, \mathrm{s}$, $\left.3^{\prime}-\mathrm{CH}_{2}\right), 5.19(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}, 6-\mathrm{CH}), 5.88(1 \mathrm{H}, \mathrm{dd}, J=5$ and $8 \mathrm{~Hz}, 7-\mathrm{CH}), 7.05(1 \mathrm{H}, \mathrm{s}$, thiazole ringH), 8.62 ($1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, 7-\mathrm{NHCO}$).

Trifluoroacetic Acid Salt of 7 β-[2-(2-Aminothiazol-4-yl)-(Z)-2-methoxyiminoacetamido]-3-propoxymethyl-3-cephem-4-carboxylic Acid (11b)

The preparation of 11 b was carried out by a method similar to that mentioned above. ${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}) $\delta 0.89\left(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right), 1.2 \sim 1.8\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.38(2 \mathrm{H}, \mathrm{t}, J=$ $7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $3.63\left(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{2}\right), 4.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NOCH}_{3}\right), 4.37\left(2 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{2}\right), 5.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $5 \mathrm{~Hz}, 6-\mathrm{CH}), 5.90(1 \mathrm{H}, \mathrm{dd}, J=5$ and $9 \mathrm{~Hz}, 7-\mathrm{CH}), 7.10(1 \mathrm{H}, \mathrm{s}$, thiazole ring-H), $8.55(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}$, 7 -NHCO).

Sodium 7 7β-[2-(2-Aminothiazol-4-yl)-(Z)-2-methoxyiminoacetamido]-3-(4-methoxycarbonyl-1,2,3-triazol-1-yl)methyl-3-cephem-4-carboxylate (11h)

3-Triazolylmethyl derivative was prepared by WILLNER's method ${ }^{177}$. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{g}) $\delta 3.10$ and $3.48\left(2 \mathrm{H}, \mathrm{AB} \mathrm{q}, J=18 \mathrm{~Hz}, 2-\mathrm{CH}_{2}\right), 3.81\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right.$ and $\left.\mathrm{COOCH}_{3}\right), 5.00(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}, 6-\mathrm{CH})$, 5.09 and $5.39\left(2 \mathrm{H}, \mathrm{AB} \mathrm{q}, J=15 \mathrm{~Hz}, 3^{\prime}-\mathrm{CH}_{2}\right), 5.60(1 \mathrm{H}, \mathrm{dd}, J=5$ and $8 \mathrm{~Hz}, 7-\mathrm{CH}), 6.66(1 \mathrm{H}, \mathrm{s}$, thiazole ring-H), $7.17\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 8.89(1 \mathrm{H}, \mathrm{s}$, triazole ring-H), $9.53(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, 7-\mathrm{NHCO})$.

Acknowledgments

The authors wish to thank Mr. S. Muramatsu, Dr. A. Saito, Miss A. Ando, Miss M. Kimura and Mr. T. Kanazaki for their assistance and advice. The authors also wish to express their gratitude to Mr. I. Igarashi and Miss M. Oyama for the microbiological assay.

References

1) Bucourt, R.; R. Heymès, A. Lutz, L. Pénasse \& J. Perronnet: Propriétés antibiotiques inattendues dans le domaine des céphalosporines. C. R. Acad. Sci. Paris, Série D 284: 1847~1849, 1977
2) Ochial, M.; O. Aki, A. Morimoto, T. Okada \& Y. Matsushita: New cephalosporin derivatives with high antibacterial activities. Chem. Pharm. Bull. 25: 3115~3117, 1977
3) Reiner, R.; U. Weiss, U. Brombacher, P. Lanz, M. Montavon, A. Furlenmeier, P. Angehrn \& P. J. Probst: Ro 13-9904/001, a novel potent and long-acting parenteral cephalosporin. J. Antibiotics 33: 783~786, 1980
4) Takaya, T.; H. Takasugi, T. Masugi, T. Chiba, H. Kochi, T. Takano \& H. Nakano: Structure-activity relationships of sodium 7β-[(Z)-2-(2-amino-4-thiazolyl)-2-(methoxyimino)acetamidol-3-cephem-4carboxylate (ceftizoxime) and its related compounds. Nippon Kagaku Kaishi 5: 785~804, 1981
5) Rolinson, G. N.: β-lactam antibiotics. J. Antimicrob. Chemother. 17: 5~36, 1986
6) Yamanaka, H.; T. Chiba, K. Kawabata, H. Takasugi, T. Masugi \& T. Takaya: Studies on β-lactam antibiotics. IX. Synthesis and biological activity of a new orally active cephalospolin, cefixime (FK027). J. Antibiotics 38: 1738~1751, 1985
7) Sadaki, H.; H. Imaizumi, T. Inaba, T. Hirakawa, Y. Murotani, Y. Watanabe, S. Minami \& I. Saikawa: Studies on β-lactam antibiotics for medicinal purpose. XVIII. Synthesis and structure-activity relationships of $7 \beta-[(Z)$-2-(2-aminothiazol-4-yl)-2-methoxyiminoacetamido]-3-substituted methyl-3-cephem-4carboxylic acid derivatives. Yakugaki Zasshi 106: 129~146, 1986
8) Yalkowsky, S. H. \& W. Morozowich: A physical chemical basis for the design of orally active prodrugs. Drug Design. Vol. IX, Chapter 3. Ed., E. J. Arı̈̈ns, pp. $121 \sim 185$, Academic Press, New York, 1980
9) Chauvette, R. R.; P. A. Pennington, C. W. Ryan, R. D. G. Cooper, F. L. José, I. G. Wright, E. M. van Heyningen \& G. W. Huffman: Chemistry of cephalosporin antibiotics. XXI. Conversion of penicillins to cephalexin. J. Org. Chem. 36: 1259~1267, 1971
10) von Daehne, W.; E. Frederiksen, E. Gundersen, F. Lund, P. Morch, H. J. Petresen, K. Roholt,
L. Tybring \& W. O. Godtfredsen: Acyloxymethyl esters of ampicillin. J. Med. Chem. 13: 607~612, 1970
11) Roholt, K.; B. Nielsen \& E. Kristensen: Pharmacokinetic studies with mecillinam and pivmecillinam. Chemotherapy (Basel) 21: 146~166, 1975
12) NG, W. S.; P. Y. Chau, Y. K. Leung \& P. C. L. Wong: In vitro activity of Ro 15-8074, a new oral cephalosporin, against Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 28: 461~463, 1985
13) Yoshimura, Y.; N. Hamaguchi \& T. Yashiki: Synthesis and relationship between physicochemical properties and oral absorption of pivaloyloxymethyl esters of parenteral cephalosporins. Int. J. Pharm. 23: 117~129, 1985
14) Shiobara, Y.: A. Tachibana, H. Sasaki, T. Watanabe \& T. Sado: Phthalidyl d- α-aminobenzylpenicillinate hydrochloride (PC-183), a new orally active ampicillin ester. I. Absorption, excretion and metabolism of PC-183 and ampicillin. J. Antibiotics 27: 665~673, 1974
15) Sakamoto, F.; S. Ikeda \& G. Tsukamoto: Studies on prodrugs. II. Preparation and characterization of (5-substituted 2-oxo-1,3-dioxolen-4-yl)methyl esters of ampicillin. Chem. Pharm. Bull. 32: 2241~2248, 1984
16) Engel, Ch. R. \& G. Just: Steroids and related products. III. The synthesis of 17β-methyl-17-isodesoxycorticosterone. Can. J. Chem. 33: 1515~1520, 1955
17) Willner, D.; A. M. Jelenevsky \& L. C. Cheney: Cycloaddition of acetylenes to 7-acylamino-3-azidomethyl-3-cephem-4-carboxylic acids. J. Med. Chem. 15: 948~941, 1972

[^0]: \dagger Current address: Sankyo U.S.A. Corporation, 780 Third Avenue, Suite 2301, New York, New York 10017, U.S.A.

